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On Measurement and Analysis of Software Changes
Audris Mockus, Stephen G. Eick, Todd L. Graves, Alan F. Karr

Abstract

Software becomes better or worse because of the changes made to it. Each change to legacy software is expensive
and risky but it also has potential for generating revenues because of desired new functionality or cost savings in future
maintenance. Hence it is important to understand and quantify change properties in order to make good business deci-
sions. Particularly good sources of historical information about changes, especially for legacy software, are generated by
change management systems used by most large software organizations. This paper describes how to measure change
properties and how to use that information to identify cost and quality drivers in software production. The methodology
is codified in a system called SoftChange. SoftChange was developed for use with the 5ESS™switch at Lucent Technolo-
gies, but can also be used with other software projects using the same, widespread version control systems. SoftChange
defines, constructs and presents essential measures of software change size, complexity, and developer expertise. Also,
it provides tools for imputing the purpose and effort required for a change, and generates predictions of the quality of a
change. This methodology uses measurements of changes to benefit the software development process and to generate

insights about software evolution.
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I. INTRODUCTION

Legacy software development organizations are constantly under pressure from new hardware and
the changing business environment to modify their software. However, changes to the software are
hard to accomplish because of the software’s age and size and the limited number of expert developers
available. Despite the landmark studies of software evolution started decades ago [1] there is little
research on measurement and quantitative analysis of software changes. This is in stark contrast to
extensive literature that exists on source code complexity [2], [3], complexity of an object oriented
design [4], or functional complexity [5].

To analyze large-scale software production it is essential to have extensive and reliable sources of
information. An underutilized and rich source of information is the data generated automatically by
the version control and change management systems. This paper will illustrate how to make use of
change management data to measure properties of software changes and how such measures can be
used in making inference about cost and quality drivers in software production.

To automate the change measurement and analysis process, we have built a collection of tools
which we refer to as SoftChange. A great variety of studies have depended on the measures of change
properties embodied in SoftChange. We developed the tools while studying the problem of code
decay [6] in the context of the 5ESS™ a large legacy switching software system. Change properties
measured via SoftChange help demonstrate the existence of code decay [6]. Together with interviews of
key personnel, data from SoftChange were instrumental in studying the interdependencies of software
development and the organizational structure in legacy organizations [7]. Change properties can also
be used to quantify increases in fault incidence due to past changes [8] or the increased complexity of
parallel changes [9]. SoftChange includes methodology for reliably inferring the purpose of changes [10],
and an iterative algorithm described in [11], [12] for identifying factors that affect the effort required
for individual changes. The presence of SoftChange has made it quite straightforward to perform
analyses using measurements on changes, so we expect other advances in the understanding of software
production to follow.

The main sources of information for the SoftChange system are version control and configuration
management databases. The way these data are stored and collected tends to be uniform over time
and for different parts of the software. In addition, most large software projects use similar databases.
It is important to note that the version control systems are used to allow tagging of different versions
of the code and to help large teams of developers to work on the same code base. Change data
are collected as a side effect when version control systems keep track of versions. Other methods

of collecting information make use of surveys or experiments [13], [14]. The resulting information is
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valuable and detailed, but limited in scope and time, even if the data gathering is not prohibitively
expensive. Further, the very act of performing the experiment can alter developers’ behavior and
thereby bias the results. SoftChange is not susceptible to these difficulties since it makes use of data

gathered automatically as part of normal processes.

The change measures provide a new information infrastructure for managers, as well as for future
research on large software systems. The new insights generated by using measures of software change
underline the importance of studying changes to the source code. The SoftChange system codifies
the knowledge about large scale commercially successful software that can be and currently is being

transferred to other software products.

5ESS™, a sixteen-year-old real-time software product for telephone switches, was the initial focus
of our investigation. Currently the product comprises 100,000,000 lines of source code, has more than
50 major subsystems with more than 10,000 modules and more than 350,000 files.! The source code
has been changed well over four million times. The sheer size of the version management database
precludes unsupported analysis. To provide comprehensive information about the entire software
product, over its entire lifetime, a system for change history data analysis must be able to handle this
size, in addition to confronting the following difficulties. First, some important pieces of information
are available only indirectly in the change history. The version control system is designed to maintain
versions of the source code but has no data on key variables like quality, purpose, or difficulty of a
change. Second, geographically distributed development leads to distributed data sources as well as
the need to distribute the results. The development of the product occurs in more than three locations
in the US as well as in more than four other countries. To address these challenges, we developed and
implemented techniques for augmenting the change data by estimating the purpose of each change, by
estimating change effort drivers, and by constructing and exploring several measures to assess change

size, complexity, and developer expertise.

In §II, we describe the specifics of the software product under consideration together with the change
management process and the structure of change data. §III describes the measurements we obtained
together with some data analyses that we performed. In §IV we illustrate descriptive exploratory tools.
Finally, in §V we describe the overall architecture of SoftChange designed to address the technical

challenges.

'In 5ESS terminology, a module is a collection of files stored in the same directory; the files tend to have related functionality.



4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1999
II. CHANGE MANAGEMENT DATA

Commercial software is rarely static, as it must evolve to satisfy new business needs and to ac-
commodate new hardware or new standards. The following sections investigate evolution of a large
software product. For concreteness we describe the change process and data specific to the product.
Most other medium to large software development projects use similar processes and collect similar
data.

We examined the 5ESS™ a large switching software project with a rich change history: it spans
sixteen years and comprises 100,000,000 lines? of source code (in C/C++ and a proprietary state
description language) and 100,000,000 lines of header and make files, organized into some 50 major
subsystems and 10,000 modules. Any one generic (release) of the system involves some 20,000,000

lines of code.

A. The change process

The changes to the source code follow a well-defined process. New software releases or software
updates are customer deliveries that contain new functionality (features) and fixes or improvements to
the code. Features (for example, call waiting or credit card billing) are the fundamental design unit
by which the system is extended. Very large changes that implement a feature or solve a problem are
decomposed by development managers into initial maintenance requests (IMRs).

Associated with each IMR are a number of maintenance requests (MRs), which are information
representing the work to be done to each module. (Thus, an IMR is a problem, while an associated
MR is all or part of the solution to the problem.) To perform the changes, a developer “opens” the
MR, makes the required modifications to the code, checks whether the changes are satisfactory (in a
limited context, i.e., without a full system build), and then submits the MR. Code inspections and
integration and system tests follow. An MR is thus the largest unit of change normally performed by
a single developer. The supervisor responsible for the IMR distributes the work to the developers.

An editing change to an individual file is embodied in a delta: the file is “checked out,” edited and

then “checked in.”

B. Change data

We present a simplified description of the data collected by the Source Code Control System
(SCCS) [15], Extended Configuration Management System (ECMS) [16]. In addition to this fairly

standard change management data we used some information from a proprietary fault and feature

?Numbers are approximate.
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tracking system (IMRTS). The structure of the changes is illustrated in Figure 1.
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Fig. 1. Change hierarchy and properties.

Changes can be aggregated to several different levels. Coarser levels than deltas, MRs, and IMRs are
features, which correspond to requirements in traditional models of software development and which
typically require hundreds of IMRs, and software releases or software updates, which correspond to
features and fix IMRs that went into a particular software release or software update. Smaller products
typically have less levels of such hierarchy. The information at the IMR and MR level would be merged
together, and features, software updates, and releases are often collapsed into a single level in smaller

products.

ECMS, like most version control systems, operates over a set of files containing the text lines of source
code. An atomic change, or delta, to the program text consists of the lines that were deleted and those
that were added in order to make the change. Deltas are usually computed by a file differencing
algorithm (such as Unix diff), invoked by SCCS, which compares an older version of a file with the
current version. The data for each delta list the parent MR and the date and time when the change
was submitted to the version management system as well as numbers of lines added, deleted, and
unmodified by that change. It also keeps the file ID that can be used to find the file name and module
in one of the ECMS relations.

ECMS records the following attributes for each change: the file with which it is associated; the
date and time the change was “checked in”; and the name and name of the developer who made it.
Additionally, the SCCS database records each delta as a tuple including the actual source code that
was changed (lines deleted and lines added), name of the developer, MR number (see below), and the

date and time of change.

Due to the extensive size of the software, the SCCS and ECMS databases have a separate instance

for each subsystem and those instances were located on five different computers. The size of the SCCS
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database for an average subsystem is 60Mb. The ECMS database averages 120Mb per subsystem.
There are around 80 subsystems so that the total volume of change management data is approximately

15 Gb.

ITII. ANALYSIS TOOLS

Before performing data analyses, we often found it necessary to augment the summary data by
constructing a number of change measures. Examples are the size of changes and their complexity,
measures of the expertise of the developers who worked on the changes, and a measure of the purpose
of the change. After describing these important measurements, we discuss our data analyses, which
include identifying factors that drive effort necessary to implement changes, predicting the quality of
a change, and measuring the modularity properties of the software. The data preparation part of

analysis tools are implemented as Perl scripts and modelling tools are implemented in S language [17].

A. Obtaining change size, complezity and developer expertise

In addition to the data available directly from SCCS and ECMS, we constructed and explored a
number of measures of change size, complexity, and developer expertise.

We found that measuring change properties is essential to understand and analyze software evolu-
tion. SoftChange computes a set of software change properties that we found useful in one or more
applications. The basic properties of the change that are recorded by a simplest change management
system include ownership (who made the change), object that is changed (product, subsystem, mod-
ule, file, and the set of lines), and time when the change was performed. We also estimate additional
measures on changes. We group such measures into five classes: size measures, duration measures,
complexity measures, expertise measures, and change purpose measures.

The size measures include numbers of lines of code (LOC) added and deleted, and LOC in the files
touched by the change. The change size is also measured by the number of sub changes. For example,
the size of a feature may be measured in numbers of IMRs, MRs or deltas, and the size of an MR may
be measured in number of deltas. Duration measures indicate the temporal interval spanned by the
change, for example, difference in time between the last and first delta or between the open and close
times of the change.

Change complexity or interaction measures include the total numbers of files, modules, or subsystems
touched by a change, or the numbers of developers or organizations involved in the change.

Change expertise measures are based on the average expertise of developers performing the change.

Developer expertise is determined by the number of deltas completed by a developer before the change
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is started.> Two modifications of developer expertise measures are also computed: recent expertise,
where recent deltas are weighted more heavily than delta performed a long time ago; and subsystem
expertise, where only deltas on the subsystems that a change touches are included in calculating

developer expertise.

B. Obtaining change purpose

There are three primary driving forces in the evolution of software: adaptive changes introduce new
functionality, corrective changes eliminate faults, and perfective changes restructure code in order to
improve understanding and simplify future changes (see, e.g., [18], [19]). Quantitative modeling of
software evolution must take into account the significant differences in purpose and implementation of
the three types of changes (see, e.g., [11], [7], [8])-

Ideally, each delta should be classified as to whether it was adaptive, corrective, or perfective.
However, the version management system does not capture this information directly, and instead
records short abstracts describing purposes of changes at the MR level. We have used textual analysis
of the MR abstracts to impute adaptive, corrective, or perfective labels to the changes [10]. Upon
taking out an MR, developers write a short description of the purpose for the change, and we have
classified MRs as adaptive, corrective, or perfective depending on which key words appear in these
descriptions. The classification scheme was able to tag around 85% of all MRs. In the 5ESS software
5% of MRs were done to implement recommendations of code inspection meetings. Such MRs were easy
to identify from their abstracts. Their purposes, however, were difficult to fit into the three categories,
since inspection MRs are mostly performed for new feature IMRs, but the inspection recommendations
are more likely to involve cosmetic/perfective maintenance (for example, better comments and naming
conventions) or fixes of potential errors. Due to those reasons, we classified such MRs into a separate
inspection class.

A more detailed description of the classification procedure and an assessment of its precision are

reported in [10].

C. Other measurements of software change

Some properties of changes are difficult to estimate from the change management data or the esti-
mates have large uncertainty. Such properties should be obtained using surveys to augment estimates
from change management data. Since surveys are relatively expensive, only a small subset of changes
can be measured. However, if the subset of changes is chosen appropriately, such measures may provide
invaluable resource to calibrate, validate, and improve the precision the analysis tools using automat-

3Thus, we use past activity and experience to measure expertise.
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ically derived change measures. Examples of such direct measurements are given in the two analysis
examples below.

The first example uses a change effort survey for changes made by a set of developers. The second
example uses root cause analysis on faults reported for all post-release failures from a subset of releases.
Such analysis shows which changes in the considered subset were the cause of the post-release failure
and which were not. If a random selection of failures for the root cause analysis were used (this is a
more traditional way to select a subset of faults to perform root cause analysis on), it would not be
capable of identifying changes that did not lead to post-release failure. See also [7] for examples of
data obtainable through interviews.

Analysis strategies in §II1I-D-III-E discuss how such additional measures could improve inference on

cost and quality drivers.

D. FEstimating effort

A particularly important quantity related to software is the cost of making changes. Therefore, it
is of great interest to understand which factors have historically had strong effects on this cost, which
we approximate by the amount of time developers spend working on the change.

When performing historical studies of cost necessary to make a change, it is important to study
changes at a fine level (MRs in our case). Studying larger units of change, such as features, can make
it impossible to sort out the effects of some important factors. For example, features typically contain
a mixture of several types of changes, especially both new code and bug fixes, and often also perfective
maintenance, so the relative difficulties of the different types of changes are not estimable at the feature
level. Also, larger change units can involve multiple developers and distant parts of the code, making
it difficult to estimate developer effects or measure, for example, decay of a single subsystem.

Measurements of change effort are not directly recorded by the change management system, so it is
necessary to use an algorithm described in [11] and implemented in SoftChange to, in effect, divide a
developer’s monthly effort across all changes worked on in that month. In doing so we make use of a
number of measurements on each change that SoftChange records. These measurements include the
size and type of a change. Both measures are related to the amount of effort required to make the
change.

In [11], we applied this procedure to learn that bug fix MRs required 80% more effort than otherwise
comparable additions of new code, that effort increases sublinearly with the size of the change, and
that one subsystem of the 5ESS™code appeared to be decaying at a rapid rate. We have since applied
the effort modeling methodology to the problem of quantifying the labor-saving effect of a development
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tool in [12].

Finally, to validate the model we surveyed eight developers to rate the effort required to perform
thirty of their own MRs done in the recent past. The results indicated that the models’ predictions
were in line with developers’ experiences.

The effort estimation tools provide valuable cost driver data that could be used in planning and in

making decisions on how to reduce expenses in software development.

E. Prediction of change quality

Predicting and modeling the possibility of post-release failure has been an active area in software
research. One approach, referred to as software reliability, aims to estimate the number of faults
remaining in the software in order to generate likelihoods of failure in periods of time; see, for example,
[20], [21], [22], [23]. Since post-release failure rates are typically very small, they are modeled for entire
releases. In addition, source-code-centric measures are typically used to model the probability of
failure, for example in [24], [13], [25], [26], [27], [28]. Historic fault rates for code units can also predict
future fault rates; see [29] as well as [8] and its references. As with effort models, the large size of
releases confounds a number of factors that contribute to failure. Such factors include experience of
individual developers and complexity, type, size and other characteristics of individual changes.

In this analysis example we modeled the probability of failure of Software Updates (SUs), which
are very small releases designed for rapid deployment of patches and small new features. Due to the
frequency and nature of software updates, the requirements on quality were extremely high - none of
the SUs should fail. The development organization consequently performs in-depth root cause analysis,
which involves finding the reason of the failure as well as lessons to prevent repeated occurrences of
similar failures, on all post-release faults in the changes submitted as software updates. This provided
a perfect environment for modeling quality, since we had all IMRs and their properties (extracted by
SoftChange) that were submitted as SUs and we also had the root cause analyses indicating which
IMRs in which SUs caused the failures.

To perform the modeling and prediction ,all change measures described above were computed for
IMRs and for SUs using SoftChange. Then, generalized linear models [30] to predict the probability of
failure of an SU were fit using all available predictors. The models were fit using the oldest 90% of SUs
and the predictive power tested on the most recent 10% of the SUs. Only a few of the change measures
were needed to obtain the best predictor of SU failure. The failure probability of the SUs increased
with the complexity of the software update (measured in numbers of subsystems touched) and with

the size of SU measured in number of added lines. The failure probability of the SUs decreases with
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recent developer expertise.

The same methodology was successful even at the very fine level of IMRs. The failure probability of
the IMRs increases with complexity (measured in numbers of modules touched). IMRs written by de-
velopers with large amounts of recent expertise were less likely to fail. More details are reported in [31].
SoftChange provides interactive Web-based tools so that developers can calculate the probability of
failure for a particular software update or IMR.

The quality prediction analyses provided valuable insights into causes of failures of software deliv-
eries. They also led to a number of process changes designed to improve inspection and testing of
the most risky IMRs and SUs, as well as to a set of more general improvements in the IMR and SU

processes.

IV. DESCRIPTIVE AND PRESENTATION TOOLS

The presentation layer is designed to integrate and deliver summary and analysis results to the user.
This is implemented using the Live Documents (see [32] and [33]) framework, and includes tools to
explore and visualize various aspects of the change data. We provide only two simple examples of the
presentation layer. The two presentations are ChangeTrend (§1V-B), which explores time patterns in
the change data, and the Subsystem Summarizer (§IV-C), which provides statistical summaries based

on change properties for subsystems of the source code.

A. Web delivery by Live Documents

The Web is our choice of presentation medium because of its extensive use and simplicity of deploy-
ment. Live Documents are World Wide Web-based tools that present documents in a manner that
facilitates interactive, reader-guided analysis and visualization of real-time data bases. To accomplish
these tasks, the data are represented as interactive tables and histograms accessible through a stan-
dard Web browser. In our case, this architecture was used to share the results with other researchers
working on a related project as well as with developers and managers responsible for the maintenance

of the analyzed software system.

B. Time trends

Time trends of change measures provide valuable information about quality, effort, and interval that
could be used in making informed decisions when managing a software project. The ChangeTrend part
of SoftChange is designed to present current status for a number of predetermined trends in change
measures. It also allows Web presentation of arbitrary trends (specified via SQL queries) of change

measures.
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Here we illustrate ChangeTrend with the total numbers of changes over time.

Time trends of the change data can be presented in a number of hierarchies (for example, subsystem—
module-file, developer-manager—organization, and line-delta-MR) and on different time scales, includ-
ing hour of the day, day of the week, month of the year, and annual.

Figure 2, for example, shows yearly time trends. From this Figure, we see that the average size of
changed files grows until 1993, and then decreases. Numbers of changes have peaks in 1987, 1989, and
1994. Yearly averages of added and deleted lines have peaks in 1985, 1987, and 1992. (There is no
peak of deleted lines in 1985 because there was not much code at that time.) The peaks in numbers of
changes lag the peaks in numbers of added lines by two years. Since the largest changes are attributed
primarily to adaptive maintenance, the peaks in added lines correspond to significant enhancements of
functionality. Such enhancements generate a large number of minor problems that are fixed (causing
a peak in the corrective maintenance that generates large numbers of changes) during the next major

release, which occurs two years later.

Lines Added Lines Deleted
R

263 4.28

3 21.2 9.56
655, 32.0 117
1009 181 7.94

1717 176 6.80
2609 178 5.85
3336 165 532
3338 221 8.92
3470 175 5.08
3372 178 497
3088 172 4.59
2664 15.8 5.10

Fig. 2. The yearly submission of changes and their sizes. File sizes grow until 1993 and then decrease. Peaks in adaptive

maintenance (large changes) are followed by peaks in corrective maintenance (large numbers of changes).

The interactive tables in Figures 3 and 2 show numeric and textual data, with variable names across
the top and values for each observation in row-ordered cells. Three representations of data values are
possible, depending on available screen space: as textual numeric digits, as thin bars with lengths
proportional to the values, and as a combination of these two, with the digits overplotted on the bars.
The rows of the table can be sorted to show relationships among the variables. Scrollbars (not shown)
on the left side of the view control the available screen space and scroll the tables.

The numbers of changes exhibit strong trends over smaller time scales as well, including months of
the year (due to a yearly project cycle), days of the week, and hours of the day. Figure 3 shows hourly
time patterns. (Hours from 12:00 midnight to 5:00 AM are not shown since they contain only small
numbers of changes.) There is a clear hourly trend of activity with one peak after lunch and one before,*
with decreases in activity at night and during lunch time. The column with average numbers of added

lines shows that the largest changes are being submitted just before midnight. Further investigation

4 All the developers work in a single time zone.
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revealed that these changes are associated with adaptive maintenance; their timing ensures access to

late shifts of the testing laboratory during peak development periods.

Fig. 3. The hourly submission of changes and their sizes. Although most changes are done during working hours,
the largest changes occur at 11PM. The first three columns show hours since midnight, numbers of changes, and
average size of the file being changed. The fourth through fifth columns show average (over all changes for that

hour) numbers of added and deleted lines.

The next section shows how the source code may be characterized by the properties of changes made

to the code.

C. Subsystem Summarizer

Here we describe the Subsystem Summarizer, a tool that automatically generates an interactive Web
page that summarizes important characteristics of code units. It calculates properties of the changes
to those code units derived from the change history.

We began study of the software by concentrating on a single subsystem, a code unit both large
and tractable. This choice also made it possible to establish strong contacts with the managers and
programmers charged with developing the subsystem, leading to improved understanding of the code
and the organizational events that affected it [7].

A product of the study of this subsystem was an understanding of what analyses are appropriate
for these data. This understanding is embodied in a Subsystem Summarizer, which is now applied
automatically to all the subsystems to incorporate the most recent changes.

An abridged version of the output from the summarizer applied to a relatively small subsystem is
shown in Figure 4. The summarizer reports demographics of the subsystem, such as the number of
modules, files, and lines of code, the latter two classified in terms of the programming languages used
in the subsystem. Most of the code in the subsystem depicted in Figure 4 is written in C, and the
subsystem also contains files of other types (make files and headers of various types), which tend to
be smaller than the C files.

The “Change Summaries” display makes the summary a Live Document (§IV-A), by allowing in-
teractive exploration of the modules and their numbers of files and lines of various types. Since we

5With the names of code units and numerical values changed to protect proprietary information.
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Fig. 4. Extracts from output of the Subsystem Summarizer. The (proprietary) numbers have been altered.

may sort the modules by their values of any of the variables and restrict attention to subsets of the
modules, we may ask questions as complex as “Of modules with more than one .h file, how strong is

the relationship between number of lines of C code and number of deltas?”

Summarizer output also includes regression relationships among different measurements on the mod-
ules and identifies outliers in these relationships. (The regression procedure includes evaluating whether
a linear model is appropriate, and running weighted regressions that yield sensible fits even in the pres-
ence of variance heterogeneity.) We see that in a typical module, four deltas are required to implement
an average MR, and that the number of developers that touch a module increases more slowly than
linearly (approximately at the rate of the 0.75 power) with the length of the module. The module
sys/modulell shows up as an outlier in both regression relationships: the MRs affecting it required
unusually large numbers of deltas, and the module was relatively long for the number of developers
that worked on it. Since deltas are restricted to affect single files, large numbers of deltas per MR may
indicate that changes to this module tend to be spread across large numbers of files and are hence
difficult to implement. Supporting this hypothesis is the fact that relatively few developers modify
this module. If only expert developers are allowed to modify it, this module may be decayed and a

good candidate for restructuring.

The summarizer also implements fault potential models described in [8]. Since the numbers of
modules and MRs involved in this subsystem are too small for the results to be reliable, these results

are not shown here.
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V. SYSTEM ARCHITECTURE

To facilitate extensions and portability, the SoftChange system has modular structure consisting of
four principal parts (see Figure 5). Access engines described in §V-A extract summary data from the
underlying software databases (ECMS and SABLIME; see
http://www.bell-labs.com/project/sablime/). As was discussed above, the summary engine
stores and queries the extracted data, while analysis tools augment and model software data. Fi-

nally, the user interface layer provides visualization and navigation aids.

Access Engine
—Extract from CMS

Summary Engine
—Storage
—Updates
—Summaries

Analysis Tools Presentation layer
—Measurement —Web server
—Modeling —Web pages
—Prediction —Java applets

Fig. 5. The four main parts of the system.

The access engine runs periodically to update the primary tables using the most recent changes in
change management system. The summary engine then augments the data, reruns the analysis (using
analysis tools), and updates the SQL database. The user interface layer includes the Web server, Java

applets, and a set of Web pages.

A. Access engine

The role of the access engines is to obtain five primary tables from the configuration management
data: logical changes, atomic changes (deltas), files, developers, and faults and features. The access
engine is implemented via a number of Shell and Perl scripts. The inputs specify the location of the
SABLIME, SCCS, and fault/feature databases (some organizations record faults and features in the
SABLIME database). The outputs are the five primary tables. In the first stage of this process the
script is launched (via rsh) on the remote computers storing the SCCS, ECMS, and other databases.
To minimize the load on those critical machines a Shell script simply packs the remote data into tar

files and copies them to the server running the SoftChange system. In the second stage of this process,
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the SCCS files and selected ECMS or SABLIME relations® are processed to generate four of the tables,
while the fault and feature database is processed into the fifth table.

Periodically, we merge updates to the change history with existing summaries. The new MRs and
deltas are extracted, classified and merged with existing databases.

The access engine also performs some data cleanup activities. The version control system keeps track
of releases of software by creating branch deltas, which can be thought of as assignment of a common
label to a particular set of file/version pairs. Such deltas, which do not add or delete any source code,
reflect the release history of software which can be obtained directly from configuration management
data or from other sources. Consequently the branch deltas are not included in the atomic change
table.

To facilitate MR classification (see §III-B), the access engine processes MR abstracts, which are
textual descriptions of the purposes of the MRs written by the developer. It converts text to lower case,
replaces all delimiters with a single space, removes non-alphanumeric symbols, and uses WordNet [34]

to remove the suffix of each word.

Description of the primary tables

The logical change or MR relation contains a change identifier, open date, a short abstract describing
the change, and the name of the developer. The atomic change (delta) relation contains the version
number, file ID, date and time the atomic change was submitted, numbers of lines added, deleted,
and unmodified by the change, name of the developer who implemented the atomic change, and the
reference to the logical change. The file relation maps file identifier to subsystem, module, and file
name. The developer relation maps developer login to the full name and organization.

The MR table lists MR, MR abstract, estimated MR purpose, the release in which the MR was
incorporated, login and full name of the developer, geographic location of the developer, and the time
stamp when MR was opened. Since a developer’s full name may be spelled in different ways and
sometimes changes, we keep the full name associated with each MR.

The delta table contains file identifier, date, time, version, lines added, deleted, and unchanged,
developer login, and MR identifier.

The developer table lists logins and all possible spellings of full names of the developers. The file
table lists file IDs paired with the file and module names.

The IMR tracking system records a number of fields for each IMR. SoftChange extracts fields

containing release number, software update number, feature number, an indicator describing at what

5The MR and ORG relations for MR abstracts and developer names, and the GM relation to map file IDs to file names.
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point in the development process the IMR originated (coding, testing, post release), and an indicator

of whether the IMR was a bug fix or a new feature.

B. Summary engine

The summary engine stores the data and provides summaries and subsets of the data, for example,
a list of changes over the last month or a list of developers who added the most lines in each module.
The tables are stored in flat files and in the SQL database. The summary engine is also responsible
for updating all tables with the newest data from the configuration management system. It is essential
to update the tables incrementally because complete retrieval of summaries from 5ESS version control

data takes several days.

The additional tables are precomputed to speed certain queries and to store additional values com-
puted using the analysis tools. The three most important additional values are change purpose, change

effort, and developer expertise.

The information extracted from SCCS and ECMS databases are linked to provide for faster access
and simpler analysis. Information on MR type is propagated to the delta table, while number of deltas,

time of first and last delta, and a list of modules and files touched are propagated to the MR table.

The additional tables are computed at delta, MR, IMR, feature, and release levels. Delta summaries

include the following information.”

MR purposes include bug, new, cleanup, inspection rework, and unknown; for more details see Section III-B. Examples of

geographic locations are Indian Hill in Illinois, Hilversum in the Netherlands, and Malmesbury, United Kingdom.
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file ID

file version

time stamp of delta

numbers of lines added

numbers of lines deleted

numbers of lines unchanged

login of the developer

MR number

subsystem

module

file

file extension

IMR number

MR purpose

MR release information

login used to open the MR
geographic location of the MR,
timestamp when MR was open
list of IMR release numbers (release)
list of IMR, bug/new classification
pipe separated list of features
when IMR originated (coding/testing/field)

software updates the IMR was included in
The information at the MR, IMR, and feature levels also includes lists of files, modules, and sub-

systems touched by the change, a list of developers participating in the change, and the time of first
and last delta.

The developer expertise summary table lists the total number of deltas completed by each login up
to a particular month on a particular subsystem. The fields are login, month, subsystem, number of
delta done in that month on that subsystem.

The additional tables are imported into a relational database (Oracle on a Windows NT PC) to
enable easy calculation of data roll-ups over subsystems, modules, developers, MRs, IMRs, features,

and releases.

VI. DISCUSSION

The main contribution of the paper is to define and construct essential measures of software changes,
to automate the measurement process, and to integrate those measurements with analysis and presen-
tation tools. Change measures include change complexity, size, purpose, and developer expertise. This

basic set is extracted and estimated from a variety of version control databases and is augmented by
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derived measures that predict change quality and cost. The SoftChange system provides a Web-based
user interface to display trends in change measures and access to analysis tools and summary results.

The SoftChange system demonstrates that version control databases are invaluable resources for un-
derstanding software evolution and the software production process. It also points out the importance
of studying individual source code changes as opposed to differences between entire versions of the
software or study of the static source code.

To be able to study software changes it was essential to handle large and complex data sets. The
volume, complexity, and lack of structure of software change data overwhelm standard statistical
analysis tools. We have developed special purpose analysis tools, tuned to software engineering data
analysis, that both scale to the data volumes associated with large-scale systems and cope with error
patterns we encountered when analyzing this data. The tools include new visualization methods to
understand software changes.

It is important to point out that our results, intuition and insights come from investigating a software
product that has been in service for many years. Not only is this product of very high quality, but
the production process can be an example to many other software products, as we are learning by
applying the SoftChange system to other products.

The SoftChange system codifies the knowledge collected through many years of study of a large and
commercially successful software product. Because this knowledge is embedded in a portable system

it can be (and currently is being) transferred to other software products.
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